

Metallurgy Reimagined.

APP MATERIAL DATA SHEET - BIOIMPLANTABLE ALLOYS*

As a leader in metal injection molding for the last 20 years, we pride ourselves on our material expertise. This guide walks you through typical material properties for Bioimplantable Alloys. Bioimplantable Alloys are a family of Cobalt-chromium alloys commonly used for the implantation of MIM components in the medical device and orthopedic industry. Need help choosing the best option? Let our application experts take a closer look. Call us at 814-342-5898 or email us at engineer@4-app.com

FEATURES AND APPLICATIONS								
Grade	Hardness	Alloy Features	Applications					
F-75 (ASTM F2886)	25 HRC	High strength, superior corrosion resistance,	Prosthetic replacements (hips, knees, etc.) bone plates, screws, rods, heart valves					
MP35N (ASTM F562)	8 HRC	non-magnetic, biocompatibility						

ALLOY COMPOSITION												
Alloy	С	Mn	Si	Cr	W	V	Ni	Мо	Со	Cu	Fe	
MIM F-75	0.35 Max	1.00 max	-	27-30	-	-	0.50 Max	5-7	Bal	-	0.75 Max	
MIM MP35N	0.025 Max	0.15 Max	-	19-21	-	-	33-37	9-10.5	Bal	-	1.00 max	

TYPICAL MATERIAL PROPERTIES									
Material	Density (g/cm³)	YS (MPa)	UTS (MPa)	Elongation (%)	Unnotched Charpy impact energy (J)	Macro Hardness	Young's modulus (GPa)		
MIM F-75 - Hipped	7.8	520	1000	40	- ><	25 HRC	190		
MIM MP35N	8.3	400	900	10	-	8 HRC	-		

COMPARISON OF MIM F75 AND CAST F75									
Material	YS (MPa)	UTS (MPa)	Elongation (%)	Reduction in Area (%)	Macro Hardness				
MIM F-75	520	1000	40	25	25 HRC				
MIM F-75 Minimum(ASTM F2886)	480	825	10	10	-				
Cast F-75 Typical	550	880	16	18	25-35 HRC				
Cast F-75 Minimum	450	665	8	8	25-35 HRC				

Donald F. Heaney, Powder Injection Molding of Implantable Grade Materials, Proceedings of MSEC:2006 ASME International Conference on Manufacturing Science and Engineering, October 8-11, 2006, Ypsilanti, MI, paper no. MSEC2006-21049.

John L. Johnson and Donald F. Heaney, Metal Injection Molding of Co-28Cr-6Mo, Medical Device Materials III, ASM, 2006.

*Handbook of Metal Injection Molding , 2nd ed. 2019. D.F. Heaney, founder and CEO of Advanced Powder Products. ISBN:9780081021521