

814.342.5898 sales@4-app.com

Basic MIM Design Guide

As a leader in metal injection molding for the last 20 years, we know a thing or two about the design process. Our quick guide walks you through design recommendations, typical attributes and material properties. Still stumped? Let our experts take a closer look. Call us at (814) 342-5898.

Design Do's

- Maintain uniform wall thickness
- Core out thick areas
- Design with a flat surface, lettering and threads
- Consider location of gates, ejector pins, and parting lines.

Design Dont's

- Walls should be no thinner than 0.1mm (0.0039 in.)
- Don't design holes smaller than 0.1mm (0.00e9 inc) in diameter
- Dont design components over 12.55 mm (0.5 in.) thick and over 100 grams in mass
- · Avoid designing sharp corners

Typical Attributes Produced by the MIM Process									
Attribute	Minimum	Typical	Maximum						
Component Mass (g)	0.030	10-15	300						
Max Dimension (mm)	2 (0a.08 in)	25 (1 in)	150 (6 in)						
Min Wall Thickness (mm)	0.025 (0.001 in)*	5 (0.2 in)	15 (0.6 in)						
Tolerance (%)	0.2%	0.5%	1%						
Density	93%	98%	100%						
Production Quantity	1000	100,000	100,000,000						

* Features this small could have distortion.

MIM Structural Material Properties									
	Material	Density (g/cc)	YS (MPa)	UTS (MPa)	Elongation (%)	Unnotched Charpy Impact Energy (J)	Macro Hardness	Young's modulus (GPa)	
	316L SS	7.8	180	520	40	190	67 HRB	185	
	17-4PH SS	7.6	740	900	6	140	27 HRC	190	
	17-4PH SS H900	7.6	1100	1200	4	140	33 HRC	190	
	420 SS	7.5	1200	1370		40	44 HRC	190	
	440C SS	7.6	1600	1250	1		55 HRC	190	
	310 SS	7.5						185	
	Fe	7.6			20			190	
	2200 (2 Ni)	7.6	125	280	35	135	45 HRB	190	
	2700 (7.5 Ni)	7.6	250	400	12	175	69 HRB	190	
	4605	7.55	210	440	15	70	62 HRB	200	
	4605 HT	7.55	1480	1650	l	55	48 HRC	210	
	4140 HT	7.5	1200	1600	5	75	46 HRC	200	

ISO 9001 | ISO 13485

Fig. 1 Illustration of thickness transition recommendations.

Fig. 1.2 Illustration of inside & outside draft angle to allow easy component removal fro tool.

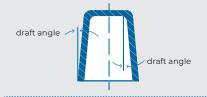


Fig. 1.3 Illustration of good and poor practice in wall thickness.

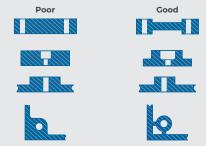


Fig. 1.4 Comparison of two drafted inside diameters with an undrafted inside diameter.

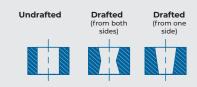
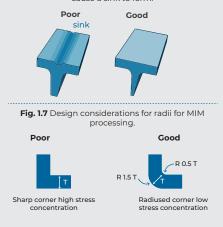



Fig. 1.5 Thread of configuration with a flat to prevent flash from interfering with thread operation.

Fig. 1.6 Comparison between good and poor practice in rib design thickness. Notice the oversided rib will cause a sink to form.

Advanced Powder Products, Inc. | 301 Enterprise Drive, Philipsburg, PA 16866 | 814-342-5898 | sales@4-app.com | www.4-app.com

*Handbook of Metal Injection Molding, 2nd ed. 2019. D.F. Heaney, founder and CEO of Advanced Powder Products. ISBN:9780081021521